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ABSTRACT
Using simple physical arguments we investigate the capabilities of a quantum computer based on cold
trapped ions of the type recently proposed by Cirac and Zoller.  From the limitations imposed on such a
device by decoherence due to spontaneous decay, laser phase coherence times, ion heating and other
possible sources of error, we derive bounds on the number of laser interactions and on the number of ions
that may be used.  As a quantitative measure of the possible performance of these devices, the largest
number which may be factored using Shor's quantum factoring algorithm is determined for a variety of
species of ion.  
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1. INTRODUCTION
A quantum computer stores binary numbers in the quantum states of two-level systems (“qubits”),

allowing the possibility of computation with coherent superpositions of numbers1.  Because a single
quantum operation can affect a superposition of many numbers in parallel, a quantum computer  can
efficiently solve certain classes of problems that are currently intractable on classical computers, such as the
determination of the prime factors of large integers2.  These problems are of such importance that there is
now considerable interest in the practical implementation of a quantum computer3,4.  There are three criteria
which designs for quantum computers must meet: the qubits must be sufficiently isolated from the
environment so that the coherence of the quantum states can be maintained throughout the computation;
there must be a method of controlling the states of the qubits in order to effect the logical “gate”
operations; and there must be a highly efficient method for measuring the final quantum state in order to
find the answer.

J. I. Cirac and P. Zoller of the University of Innsbruck have proposed what seems to be the most
promising design for the implementation of a quantum computer to date5.  A number of identical ions are
trapped and cooled in a linear radio-frequency quadrupole trap to form a quantum register.  The radio-
frequency trap potential gives strong confinement of the ions in the Y and Z directions transverse to the
trap axis, while an electrostatic potential forces the ions to oscillate in an effective harmonic potential in
the axial direction (X) (see fig.1).  After laser cooling the ions become localized along the trap axis with a
spacing determined by their Coulomb repulsion and the confining axial potential.  The normal mode of the
ions’ collective oscillations which has the lowest frequency is the axial center of mass (CM) mode, in
which all the trapped ions oscillate together.  A qubit is the electronic ground state |g> and a long-lived
excited state |e> of the trapped ions.  The electronic configuration of individual ions, and the quantum state
of their collective CM vibrations can be manipulated by coherent interactions of the ion with a laser beam,
in a standing wave configuration, which can be pointed at any of the ions.  The CM mode of axial
vibrations may then be used as a “quantum data bus” to implement the quantum logical gates.  Once the
quantum computation has been completed, the readout is performed through the mechanism of quantum
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jumps.  Several features of this scheme have been demonstrated experimentally, mostly using a single
trapped ion4,6.  More detailed discussions of the Cirac and Zoller design have been given by Steane7 and by
James8.

The unavoidable interaction of a quantum computer with its environment places considerable
limitations on the capabilities of such devices9.  In this paper we present a quantitative assessment of these
limitations for a computer based on the Cirac-Zoller cold-trapped-ion design10.  There are two
fundamentally different types of decoherence during a computation: the intrinsic limitation imposed by
spontaneous decay from various quantum states of the ions; and practical limitations such as the random
phase fluctuations of the laser driving the computational transitions or the heating of the ions’ vibrational
motion.  One could, in principle, expect that as experimental techniques are refined, the effects of these
practical limitations may be reduced until the intrinsic limit of computational capability due to
spontaneous emission is attained.
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Figure 1. A schematic illustration of the Cirac-Zoller quantum
computer.  The laser beam is in a standing wave configuration and can
be steered from ion to ion.

2. FUNDAMENTAL PERFORMANCE CONSTRAINTS
2.1 Effect of extraneous phonon states

There are two types of laser pulse that are required in order to realize Cirac and Zoller’s scheme for
quantum computation.  The first are pulses that are tuned precisely to the resonance frequency of the |e> to
|g> transition of the qubits, ideally configured so that the ion lies at the node of the laser standing wave
(“V-pulses”); the second type of pulse is tuned to the CM phonon sideband of the transition, arranged so
that the ion lies at the antinode of the standing wave (“U-pulses”)11.  It is the second type of pulse, which
can excite both the internal degrees of freedom of the ion and the motion of the ions in the trap, which is
the most challenging experimentally, and it is the ability to execute successfully these pulses that is an
important limiting factor in the realization of a practical device.  The Hamiltonian for the interaction of the
U-pulses is given by the following expression5:

ˆ ˆ ˆ†H
L

e g ae g e a ei i= +[ ]−hη φ φ

2
Ω   . (1)

In this formula, Ω is the Rabi frequency for the laser-ion interaction, L is the number of ions in the trap, â
(â†) is the annihilation (creation) operator for phonons of the CM mode and η = ( hω2cos2θ/2Mc2νx)

1/2 is
the Lamb-Dicke parameter (here ω is the laser angular frequency, θ the angle between the laser and the trap
axis, ν x is the angular frequency of the ions’ axial CM mode and M the mass of each ion).  A careful
calculation8, based on a perturbative analysis of the excitation of phonon modes other than the CM mode,
shows that this Hamiltonian is valid provided that (2.6Ωη/νx√L)2 << 1 .  The duration of each 2π U-pulse
is tU=2π√L/Ωη.  For simplicity we will assume that all of the U-pulses required for the calculation are of
this duration.  In order to avoid excitation of extraneous phonon modes, the duration of each U-pulse must
be limited by the following inequality:
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where the factor of 16.3 comes from 2π × 2.6.  This result can also be obtained approximately from the
simple uncertainty principle argument that there must not be appreciable power at the frequencies of the
resonances associated with other lattice vibrations.  

2.2 Effect of spontaneous emission from the upper level of the qubit
The influence of spontaneous emission on a quantum computation with trapped ions depends on the

natural lifetime of the excited state |e> of each qubit; the number of ions, L , being used; and the quantum
states of those ions.  The number of ions which are not in their ground states varies as the calculation
progresses, with ancillary ions being introduced and removed from the computation.  The progression of
the ions’ states can be characterized well by an effective number of ions, L', which have a non-zero
population in the excited state |e>.  In the case of Shor’s factoring algorithm2, a reasonable estimate is L' ≈
2L/3.  

To estimate the effect of decoherence during the implementation of Shor’s algorithm, we will consider
the following simple process: a series of laser pulses of appropriate strength and duration (π/2 pulses) is
applied to 2L/3 ions, causing each of them to be excited into an equal superposition state (|e>+|g>)/√2.
After an interval T , a second series of laser pulses (–π/2 pulses) is applied, which, had there been no
spontaneous emission, would cause each ion to be returned to its ground state.  This is the “correct” result
of our pseudo-computation.  If there were spontaneous emission from one or more of the ions, then the
ions would finish in some other, “incorrect” state.  This process involves the sort of superposition states
that will occur during a typical quantum computation, and so the analysis of decoherence effects in this
procedure will give some insight into how such effects influence a real computation.  The probability of
obtaining a correct result is P(T) ≈ 1–LT/6τ0, where τ0 is the natural lifetime of the excited state |e>.  Thus
the effective coherence time of the computer is 6τ0/L.

The total time taken to complete a calculation will be approximately equal to the number of laser pulses
required multiplied by the duration of each pulse.  The time taken to switch the laser beam from ion to ion
is assumed to be negligible.  The interaction of U-pulses with the ions is considerably weaker than the V-
pulses, and so, assuming constant laser intensity, the U-pulse duration must be longer.  Hence, in
calculating the total time required to perform a quantum computation, we will neglect the time required for
the V-pulses.  Because the entire calculation must be performed in a time less than the coherence time of
the computer, we obtain the inequality NUtU < 6τ0/L. If we substitute from (2) we obtain the following
constraint on the values of NU and L:

N LU x< 0 37. 0τ ν   , (3)

where NU is the total number of U-pulses required for the calculation.  

2.3 Effect of extraneous atomic states
Figure 2 shows a simplified energy level diagram for typical alkali-like ions which are suitable for use

in a quantum computer of the type we are discussing.  A laser field, precisely tuned to the |e> to |g>
transition wavelength is used to perform Rabi flips between these two levels.  However as these operations
are being performed there will be a small probability of erroneously exciting other short lived quantum
levels of the ion; if one of these levels were spontaneously to emit a photon during the computation, then
the coherence of the computer would be lost.

If the average probability of some extraneous level |3> being excited is P3, then to avoid decoherence
due to this mechanism we require that NUtUP3/τ3 < 1, where τ3 is the lifetime of the extraneous level |3>.
The probability P3 can be shown to be given approximately by the formula P3 ≈ Ω2τ0λ

3
3/4τ3∆

2λ3 , where
∆  is the detuning between the transition |e> to |g> and the transition |3> to |g>, λ is the resonance
wavelength of the |e> to |g> qubit transition and λ3 is the resonance wavelength of the |3> to |g>
transition. Using the formula for tU, (2), and the definition of the Lamb-Dicke parameter, we therefore
obtain the following constraint:
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Figure 2.  Simplified energy level diagram for alkali like ions. The state
|g> is the ground state, |e> is the metastable first excited state used as the
upper level of the qubit and |3> is some short-lived “extraneous” level.

2.4 Effect of laser spot size
In order to attain the highest possible computational capability, one will need to minimize the duration

of each laser pulse.  Hence, according to (2), it will be advantageous to employ an ion trap with the largest
possible value of the trap frequency ν x.  However, the axial frequency cannot be made arbitrarily large
because, in order to avoid crosstalk between adjacent ions, the minimum inter-ion spacing must be much
larger than the size of the focal spot of the laser beam.  The minimum separation distance between two ions
occurs at the center of the string of ions, which can be calculated by solving for the equilibrium positions
of the ions numerically, resulting in the following expression8 :
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where e is the electron charge, ε0 is the permittivity of a vacuum and M is the mass of each ion.  The
spatial distribution of light in focal regions is well known12.  The approximate diameter of the focal spot is
xspot ≈ λF, where λ is the laser wavelength and F the focal ratio of the focusing system (i.e. the ratio of the
focal length to the diameter of the exit pupil).  Hence the requirement that the ion separation must be large
enough to avoid cross-talk between ions, i.e. that xmin >> xspot, leads to the following constraint on the
value of the trap frequency:
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3. PERFORMANCE CONSTRAINTS BASED ON ATOMIC DATA
It will be convenient to write the trap angular frequency ν x in terms a frequency in units of MHz, i.e.,

νx = 2πf × 106.  Then the inequalities (3) and (4) may then be written in the simplified form

  N L AfU < ,   N L B fU < 2 (7)
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where the constants A and B depend on the species of ion chosen (we have assumed and angle θ = 80o to
evaluate the parameter B).  We will be considering four different species of ion, all of which have the
property that their first excited state above the ground state is metastable.  These ions are:
(i) Hg+: mass number 198; |e> is a sublevel of the 5d96s2 2D5/2 level, |g> is a sublevel of the 5d106s 2S1/2

level and |3> is a sublevel of the 5d106p 2P1/2 level: λ = 281.5 nm; τ0 = 0.098 sec, λ3= 194.2 nm; τ3=
2.3 nsec.  

(ii) Ca+: mass number 40; |e> is a sublevel of the 3 2D5/2 level, |g> is a sublevel of the 4 2S1/2 level and |3>
is a sublevel of the 4 2P1/2 level: λ = 732 nm; τ0 = 1.16 sec, λ3= 397 nm; τ3= 7.7 nsec.  

(iii) Ba+: mass number 138; |e> is a sublevel of the 5 2D5/2 level, |g> is a sublevel of the 6 2S1/2 level and
|3> is a sublevel of the 6 2P1/2 level: λ = 1.761 µm; τ0 = 47 sec, λ3= 493 nm; τ3= 11 nsec.  

(iv) Sr+: mass number 88; |e> is a sublevel of the 4d 2D5/2 level, |g> is a sublevel of the 5s 2S1/2 level and
|3> is a sublevel of the 5p 2P1/2 level: λ = 687 nm; τ0 = 395 msec, λ3= 422 nm; τ3= 7.9 nsec.  

References for this data are given in8.  Values of the parameters A and B for these ions are given in table1.

Ion A (×106) B (×106) f0(MHz) Lmax

Hg+ 0.228 0.150 0.870 222
Ca+ 2.70 0.112 0.346 314
Ba+ 109 0.00327 0.0310 544
Sr+ 0.918 0.0768 0.437 166

Table 1: Values of important parameters defined in the text
for four different types of ion.

The two inequalities given in (7) imply that there is a optimum value of the trap frequency at which the
product NUL will have a maximum allowed value.  This optimum frequency is given by the following
formula:

f B A0
1 3

= ( ) . (8)

The values of f0 for our sample ions are given in table 1.  Thus the constraint on the performance of the
quantum computer due to decoherence now reads

N L AfU < 0. (9)

This relationship is plotted in figure 3 for the four different species of ion we are considering.

When operating the ion trap computer at frequency f0, (6) implies that there is a maximum value for the
number of ions Lmax which can be used in the trap.  If more ions than Lmax ions are loaded, then the laser
beam will be unable to resolve the individual qubits, resulting is errors in the calculation.  The values of
Lmax can be calculated from (6); they are also given in table 1 (we have assumed an angle θ = 80o and a
focal ratio F = 1).  As can be seen, when operating the trap with a few dozen ions at the optimum
frequency given by (8), there should be no particular difficulty about resolving the ions.

4. QUANTUM ALGORITHMS
We will now apply the bound (9) to Shor’s factor finding algorithm2.  Let l be the number of bits of

the integer we wish to factor.  An analysis of one version of this algorithm13 shows that the required
number of ions and U-pulses are approximately given by:

L = +5 4l   , (10)

NU ≈ − +[292 151 8 2] 33 2l l l +   . (11)

Equations (10) and (11) define a curve in (L, NU) space, which taken in conjunction with the inequality (9)
allows us to determine the largest number of ions that can be used to implement the simple version of
Shor’s algorithm (without the use of quantum error correction) in an ion trap computer with bounded loss
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of coherence.  The linear relationship between L and l, (10), can then be used to determine the largest
number that can be factored .  

0

2 104

4 104

6 104

8 104

1 105

0 10 20 30 40 50 60

Number of Ions, L

l=10

9

Number of 
pulses

NU

Hg+

Sr+

Ca+

Ba+

8

7

6

5

4
32l=1

Figure 3.  The bounds on the numbers of ions, L, and the number of
U-pulses, NU, that may be used in a quantum computation without
loss of coherence.  The allowed values of NU and L lie to the left of
the curves.  Curves for four ions are plotted.  The unbroken line is the
“factorization curve”, specified by (10) and (11), which represents
those values of NU and L which are required for execution of Shor’s
algorithm; the heavy black dots on this line represent the values of NU

and L required to factor a number of l bits (l = 1, 2, ...10).  

In figure 3 we have plotted the curves which limit the allowed values of L and NU, as given by (9). We
have also plotted, with a solid line, the “curve of factorization” defined by (10) and (11).  The intersection
of the limiting curves for the different ions with the curve of factorization gives us an estimate of the
largest number that can be factored; for a Cirac-Zoller quantum computer based on Hg+, Ca+, Ba+ or Sr+

ions the largest numbers that can be factored are 4 bits, 6 bits, 9 bits and 5 bits, respectively.  It should be
remembered that these results are only estimates of what can be done before spontaneous emission starts to
become a problem; larger quantum calculations could be tackled if one were to accept a higher probability
of error or to adopt some scheme of quantum error correction.  Although these results may seem small,
they nevertheless represent a large number of quantum logic operations (for example, to factor a 6 bit
number requires of the order of 2 × 104 laser operations).  Thus our results suggest that a reasonable degree
of optimism is justified regarding the possibility of performing extended quantum logic operations using
ion trap quantum computers.

5. EXPERIMENTAL DECOHERENCE EFFECTS
One may calculate the limits on factoring due to other causes of decoherence by a similar procedure to

that used above.  In this case, we will assume that the loss of quantum coherence due to sundry effects
such as random fluctuations of the laser phase or the heating of the ions’ vibrational motion can be
characterized by a single coherence time τe.  The effects of other causes of error, such as imprecise
measurement of the areas of π-pulses, which do not result in decoherence but nevertheless lead to incorrect
results in a computation, can also be characterized by the time τe.  Thus, in place of (3) we now have the
inequality NUtU < τe.  Using (2) we obtain the following constraint on the value of the number of laser
pulses NU which can be used in a quantum computation without significant loss of coherence:

N fU e< × .3 85 105
0τ  . (12)
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Using (11) and the values of f0 given in table 1, one can solve (12) to determine the number of bits l in the
largest number which may be factored.  In this case the value of l will depend on the specie of ion and the
value of the coherence time τe.  In figure 4 we have plotted the values of l as a function of the experimental
coherence time for the four species of ions discussed above.  As τe increases, the largest number that can be
factored also increases, until the limit due to spontaneous emission discussed above is attained.  

0

1

2

3

4

5

6

7

10-6 10-5 10-4 10-3 10-2 10-1 100

Hg+

Sr+

Ca+

Ba
+

Si
ze

 o
f 

nu
m

be
r 

fa
ct

or
ed

 (
bi

ts
)

  Coherence time  (seconds) τ e

Figure. 4. The variation of the number of bits l in the largest integer that
may be factored with the experimental coherence time for the ions
discussed in the text.  The plateaus in the curves for Hg+, Ca+ and Sr+ are
the limits determined by spontaneous emission discussed above.

The slowest heating rate for a single trapped ion so far reported is 6 phonons per second (i.e. τe = 0.17
sec)14, and the laser phase coherence times longer than 10-3 sec have been achieved by several groups15.
Comparing these numbers with fig.4, we see that, in principle, current technology is capable of producing
a quantum computer that could factor at least small numbers of several bits.  

The various causes of experimental decoherence which are mentioned above are all under investigation.
It is not clear, for example, how laser phase fluctuations will affect quantum computations; it may be the
case that the laser need be coherent only over the period required to execute each quantum gate operation.
Furthermore, the heating rate of the ions’ vibrational motion as a function of the number of trapped ions is
not known.  Other methods of coherent population transfer, which may be less susceptible to the effects of
phase fluctuations, for example stimulated Raman transitions between magnetic sublevels of the ground
state may offer considerable advantages.  

We have ignored in the above calculation the influence of quantum error correction in the calculation.  It
is clear that if quantum computation is to overcome decoherence and other errors, then some form of error
correction must be used extensively.  This is a field that is the subject of considerable ongoing research.
The latest results suggest that if quantum gate operations can be performed within some threshold degree of
accuracy, estimated to be below 10–6, then arbitrarily complex quantum computations can be performed
reliably16.  These theoretical results give a challenging but not necessarily impossible goal for various
technologies to aim at.  The results presented here give reasonable grounds for optimism: for example, to
factor a 6 bit number, (which should be possible using a quantum computer based on Ca+ ions) requires of
the order of 2.0 × 104 operations.  Thus taking into account decoherence effects, the degree of accuracy of
each operation will be of the order of 5.0 × 10–5, which is encouragingly near the required accuracy
threshold.  Note however we have not taken into account errors due to operational causes, such as inexact
pulse areas or laser intensity fluctuations.
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6. CONCLUSIONS
We have derived quantitative bounds which show how the computational capabilities of a trapped ion

quantum computer depend on the relevant physical parameters and determine the computational “space” (L)
and “time” (NU) combination that should be optimized for the most effective algorithms.  The effect of this
bound has been illustrated by calculating the size of the largest number that may be factored using a
computer based on various species of ion.  Our results show there is reason for cautious optimism about
the possibility of factoring at least small numbers using a first generation quantum computer design based
on cold trapped ions.  However, the large number of precise laser operations required and the number of
ions involved indicates that even this computationally modest goal will be extremely challenging
experimentally.  
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